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N E W  P A R A B O L I Z E D  SYSTEM OF E Q U A T I O N S  OF S T A B I L I T Y  

OF A C O M P R E S S I B L E  B O U N D A R Y  L A Y E R  

G. V. Pe t rov  UDC 532.526 

Based on estimates for the critical layer, a system of equations of stability of a compressible 
boundary layer is obtained. The system is parabolic and free from the known restriction on 
the step of the marching scheme related to ellipticity, which could not be eliminated within the 
framework of the previous method. A numerical scheme is described, and calculation results 
for the boundary layer on a heat-insulated plate are presented. 

In deriving parabolized equations of boundary-layer stability (see, for example, [1]), the authors used 
previously asymptotic estimates for integer powers of R = v/-~, where Re is the Reynolds number based 
on the distance x from the plate edge. Terms of order R -1 are retained in the equations (here and in 
what follows, estimates of the terms of the equations are taken relative to the main terms). It is known, 
however, that perturbations of velocity and viscous stresses reach the highest values in the critical layer in 
which different estimates including fractional powers of R are valid. Dunn and Lin [2] ignore terms of order 
R -1 even outside the critical and near-wall layers, thus, assuming that the equations of the inviscid parallel 
theory of stability are rather accurate. Among the equations for the critical layer, Dunn and Lin [2] took 
into account only the main terms, whereas the preliminary estimate for the term containing the x derivative 
of the amplitude function of the streamwise component of velocity perturbation yields the order R -1/3. In 
the present paper, we ignore only terms of order R -1 that contain perturbations of viscous stresses or x 
derivatives of the amplitude functions of" the perturbations. 

The equations of dynamics of a viscous compressible fluid in an arbitrary orthogonal coordinate system 
(El, ~2, ~3) [3] are represented in the form 

dtp + p div v = O, 

3 

pdtvi + E [Him(pViVm - Tim) -- Hmi(pV2m - rmm)] = -Oip + div ~'i (i = 1, 2, 3), 
r n = l  
rnTs 

pdtH = Otp + div q, 

where v is the velocity, p is the density, p is the pressure, and H is the total enthalpy, 

3 0 I 0 3 
d t = O t +  E v k O k ,  0 , = - ~ ,  Ok=-~k 0~--'--2' d i v a = E ( O k + h k ) a k ,  

k = l  k = l  

hk= E Hmk, Hrnk=OklnHrn, H m = v ~ . ~ m j  +\O~rn] \O~m) '  
m = l  
m#k 
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Tik ---- ]s Ok Vi + OiVk -- g i k  Vi -- gkiVk ), Vii = 2J.t OiVi + HirnYm - -~ d i v v  , 

r n = l  
m#i 

"ri = (7il,~-i2, Ti3), qk = AOkT + VkV, t is the  t ime,  x,  y, and  z are the  Car te s i an  coordina tes ,  T is the  
t e m p e r a t u r e ,  # is the  viscosity, and A is the  t h e r m a l  conduct iv i ty .  

T h e  l inearized sys tem of equat ions  for a p e r t u r b a t i o n  5 of  a flow p a r a m e t e r  a (a ~ a + &) has  the  form 

3 

(dr + divv)~5 + ~-~(Okp)'bk + p d iv / ;  = 0, 
k = l  

p [dtvi + ~-~(Ol,.vi)Ok + VkOkVi p + [Him(ViVrnP + pvif~,n + pVmVi - "rim) 

k = l  r n = l  
rn#i 

- Hmi(V2m~ + 2pvm~;m --/'mm)] = --OiP + div i ' i ,  

3 ) ~, i'ik = l~[(Ok -- Hik)~;i + (oi -- gki)CJk] + rik ~-, ~'ii = 2p  Oii;~ + ~ H / m ~ m - t d i v 0  + ~ = i i -  
# # rn= l 

rn#i 

3 
pdtI-I + Z ( O k H ) ( p b k  + v k D ) = O ~ / 5 + d i v c l ,  Ok=/~OkZ + (OkT)~ + 7"kV-t-Vi'k �9 

k = l  

Below, we consider  a p lanar  p r o b l e m  using the  coord ina te  s y s t e m  (~, ~) ,  where  ~ is the  s t r e a m  funct ion 

of the  m a i n  flow. Then ,  we have/ - /2  = 1/ (pu) ,  hi = - 0 1  In (pu),  h2 = 02 In H1 is the  s t r eaml ine  curva ture ,  
and  u is the  s t eady  velocity. Natural ly ,  we a s sume  ~ = 0 on the  wall and  de t e rmine  the  Lam~ coefficient H~ 

t h r o u g h  the  c u r v a t u r e  by t h e  integral  H1 = exp  f h2H2 de;  the  value of ~ on the  wall is the  d i s t ance  along 

0 
it. 

We consider  a p e r t u r b a t i o n  in the  form of a m o n o c h r o m a t i c  wave wi th  angu la r  f requency  w: 

5 ( ~ , ~ , t )  = 5 ( ~ , ~ ) e x p  { i [ / k ( ~ ) d ~ -  wt] } .  

Subs t i t u t i ng  the  no t a t i on  of the  ampl i t ude  funct ions  of  the  ve loc i ty -pe r tu rba t ion  c o m p o n e n t s  ~51 and  ~?2 (along 

the  s t r eaml ines  and  no rma l  to them)  wi th  g and  ~, we ob ta in  

(02 + h2)~? + (h i  + i s  + 01),5 - ~ = 0, 

02(/5 - ~22) + p(h lu  + dr)f; - h2u(2p~ + up) - is~-12 = (2hl + 01)r12 + h2(~22 - 711), 

(02 + 2h2)~i2 - ( i s  + 01)/5 - p(02u + h2u)f; - p(OlU + dt)~ - (uOlu)~ + is~-ii = - ( h i  + 01)Til + hiT22, 

(02 - h2)fi + ( i s  - hl )~  + n2f~ /#  2 - Ti2/# = --01~?, 

(02 + h2)(t2 - iw/5 - (p02H)~; - (pOlH)(z - pdt[-I - (uOlH)~  + i s~ i  = - ( h i  + Oi)ql,  

(1) 

~02T + r12~ + u~12 + (02T)i - ~2 = -~'22~, 

~li - 2 # ( i s ~  - ~/3) = 2#(h2~ + 0ifi) + Tiif~/#,  ~22 -- 2#(025 -- ~/3) = 2#hl f i  + T22/5/#, 
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ql - Vl2V -- is)~T - uTii --- r l l f i  + A01T + (01T)~,  p~ = - (02p) 'b  - (Olp)u - (e + dr)/3, 



T A B L E  1 

Power Indices b Determining the Order of O(R b) 
of Parameters and Operators for Perturbations in the Critical Layer 

Order of 

O~,03 

o(~) 
O(R-~ /~ )  

0 ( ~  -~) 

Par'. tmeters and operators 

- 2 /3  

-5 /6  

-1  

-1  -1  

: 6  I - 3 /2  -4 /3  
- 2  -2  

where dt = Uc + u01, Uc = i ( u a  - w) ,  a = k / H 1 ,  e = (01 + h i ) u ,  712 = p(02 - h2)u ,  v n  = 2# ( 01u  - e/3),  and 
~-22 = 2 # ( h l u  - e/3). 

By analogy with [2], we evaluate the terms of system (1) for R --* oc in the critical layer of thickness 
5c located in the vicinity of the point Uc = 0. We use the boundary-layer thickness 5 as a length scale, 
R = UeS/Ve,  where ~e = #e /Pe ,  and the subscript e corresponds to the value at the boundary-layer edge. 
Then, we have ~ = O(R); for the main flow, 01 = O ( R  -1 )  and 02 = O(1) (01 and 02 are roughly equal to 
derivatives with respect to the usual coordinates of the boundary  layer), and #, A = O ( R - 1 ) .  The  viscous 
(#022~) and inviscid (pUc'5) terms in the second-order equations equipment to the third and fourth equations 
of system (1) should be of the same order. With account of the estimate uc = O(aSc) ,  it follows that  

5c = O ( ( a R ) - l / 3 ) .  
It is assumed [2] that  a = O(1); then we have 5 = 0 ( R - 1 / 3 ) .  This is valid for higher modes, but  for 

neutral perturbat ions of the fundamental mode we have a = O ( R - 1 ) .  The power indices b determining the 
order O ( R  b) of the parameters and operators for perturbations in the critical layer are listed in Table 1. Apart  
from the extreme cases a = O(1) and a = O ( R - 1 ) ,  Table 1 gives data  for an intermediate case a = O ( R - U 2 ) .  

We assume (the linear perturbat ion is determined with accuracy to an arbi t rary factor) that ~,/~r, ~,  and fi 
are of order O(1). Estimates for ~ and/5 are obtained from the requirement that  they should be contained in 
the main parts  of the first and third equations of system (1). 

The right sides of the first six equations consist of terms of order R b (b < - 1 )  and, therefore, are 
rejected. In the next three equations determining "~n, "r22, and ql, it is also sufficient to retain only the 
left parts for the previous equations to contain all terms of order R -1. Using the approximate relations 

02,5 = - i a , 5  - (02 in p)~ - (uc /p ) f i  and 02~ = " F 1 2 / #  - -  TI2#/P 2, we obtain 

02~ = - (02  In p + h2)~ + (0t In u - i s  - 0 1 ) 7 ~  - ( 1 / p ) ( u c  - u01 in p + u01)~, 

02~ = -p(~c  + hl~),~ + h2~(2p~ + ~ )  - iae  - / 1  + [2, 

02~ = (ia + 01)~ + p(02u + h2u)~ + (pOlu + 2a2p + pUc + puO1)~z + (uOru)~ - 2h2~ - [ 3 ,  

02~ = (h i  - i ~ ) ~  + h2~ - ( 0 2 ~ / ~ ) ~  + r 

(2) 

02~ = zw:5 + (p02H).~ + (pO1H + 2 a 2 p u ) ~  + p(uc  + uO1)[-I + a2AT + ( u O 1 H ) ~  - h2~ - [4, 

~02:F : - ( # 0 2 u ) a  - u~ - (02T) i  + 4, 

where s and ~ correspond to s and q2 in (1), 

[1 = puOl~;  [2 = 2 i a [ (02 #  - 2p02 in (p)/3)fi - (02u)/5] + ( 4 # u c / ( 3 p ) ) 0 2 ~ ,  

[3 = ( 2 i a # / 3 ) [ ( 0 2  in p)9  + (uc/p)f)]; [4 = u[3 + i a p ( 0 2 u ) 9 .  

(3) 
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It follows from the estimates given in Table 1 that  [k reach the order R -1. These terms contain only 
perturbations of viscous stresses or ~ derivatives of the amplitude functions and, in accordance with the above 
assumptions, should be rejected: 

[k = 0, k = 1-4. (4) 

System (2), (4) does not contain 0~/0~ and, with account of linearized equations of state of the gas, 
can be reduced to the canonical parabolized form OZ/O~ = A O 2 Z / O r  2 + B [Z = (9, u, ffI), A is the matrix 
of functions of coordinates, and B is the vector function of ~, W, Z, and OZ/O~]; therefore, it is free from 
ellipticity limiting the step A~ of stable calculation by implicit marching schemes [1] by the inequality 

f<A  > 1. (5) 

Parabolicity is retained after nontensor transformations of the form ~1 = ~1 (~) and ~2 = ~2(~, W), for example, 
in passing to a variable of similarity for the boundary layer on a flat plate. 

The terms taking into account the curvature of streamlines can be excluded if (on a scale of 6) h2R << 1. 
With  account of H1 = 1 + O(h2), the relations 01 -- 0/(9~ and a = k are rather accurate. For the flow past a 
flat plate considered below, we have h2 = O(R-2).  

We use the following scales: ve/Ue for distance, Ue for velocity and components of its perturbation, 
Ue/l,'e for c91, 02, and a,  u2~/~'e for w and uc,/se for %b, #, and/5, up for H and/~r, Pe for p and/5, peu 2 for/5 
and ~, peu a for 0, Te for T and T, and #~u2/T~ for A and ~. The quantities with the subscript e are constant; 
for a fiat plate, these are the values at the boundary-layer edge. In these dimensions, the form of Eqs. (2) 
and (3) does not change. 

We pass to the variable of similarity f = ~b/v~, and then to R = v~, and dr# = dr~u, so that  

1(0  s s0  

For a perfect gas with a constant Prandtl  number Pr, the following relations are valid: A = # / ( P r g m l ) ,  

T = gmlh,  p = 1 /T ,  ~ / p  = gmP - T / T ,  g,n = 7 M  2, and gin1 = (3 - 1) M 2 (M is the free-stream Mach number 
and "y = Cp/Cv is the ratio of specific heats). Equations (2) and (4) take the form 

~' = pT'~  - (io + foTu '  + 0)'5 - T2"i~p - gmuO~ + p ( - f 2 T '  + uO)T  - f lTgt '  + f2:F', 

~' = - ( i c  + rhu)v  -- log', g" = (io + 0)~ + pu'go + (ic + f l u '  + 2at + puO)gt + f2u 'T~  + f2~t', 

= ( hT - io)'  - + r  (6 )  

~' = i w R T ~  + pH'~  + ( f l H '  + atu)~z + f l n '  uTf i  + (ic + at + puO)ffI + a t (1 /Pr  - 1)/z + f2H',  

T z ' = - P r u ' ~ z - h ' [ z / # + ( P r / p o ) ( O - u ~ ' ) ,  T = g m l h ,  / : / =  Tz + u'5, 

where 0 = RT(O/O{ )  = (T /2 ) (O/OR) ,  io = i a R T ,  at = c~2RT#, ic = Ruc = i R ( u c ~ -  w),  I*o = # / ( R T ) ,  

fo = f / ( 2u2R) ,  f l  = - f o u ,  f2 = f l u ,  and rh = R h l  = fou'  + f l p T ' ;  the prime indicates derivatives with 
respect to r#. 

Using in Eqs. (6) a simple approximation of derivatives with respect to R Ogz/OR .~ (~z - 80)/AR, 
where AR = R -  R0 is the step of the marching scheme, we obtain a system of ordinary differential equations. 
With  account of obvious substitutions, this system acquires the form Z'  = A Z  + B ( Z  - Zo), where Z = 
(~,/5, ~, fi, ~,/~r) and A and B are matrices composed of the coefficients of Eqs. (6). Hereinafter, the subscript 
0 indicates a quanti ty calculated at the previous step with respect to {. For a given ct, the general solution 

6 

of this system is the superposition Z = ~ CkZk + Zn of linearly independent solutions of the homogeneous 
k = l  

system Z '  = (A + B ) Z  and an arbitrary solution of the inhomogeneous system. 
To derive the conditions at the outer edge of the boundary layer, we get back to Eqs. (2) and (4) using 

the previous notation for the corresponding system of ordinary differential equations. The neglect of terms 
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containing c9:5 outside the boundary layer means that B = 0 for ~b > g'e, i.e., the system is homogeneous. In 
the case of the flow around a flat plate, the general solution is a superposition of three decaying and three 
growing perturbat ions for ~b --* oc with pre-exponents Zke known from parallel theory. The solution in the 
boundary-layer region corresponding to the requirement of per turbat ion decay outside its boundaries can be 
constructed from four vectors using the following boundary conditions for them: 

G = c z 3 ~ ,  z k  = G ~ ,  k = : - 3 ,  , = .~. (7) 

The  inviscid vector Z3e is used in the condition for the inhomogeneous equation but  it is possible to use an 

arbi t rary  superposition Zk~. 
Four vectors are determined by simultaneous numerical integration of the corresponding equations 

from the outer edge of the boundary layer to the wall. In doing so, orthogonalizations are used (Zn is the 
last tern: to be orthogonalized; it is not orthogonalized relative to Z3 and is not normalized). The constants 
Ck are determined by the conditions on the wall ,~ = '5 = / 7 / =  0 for ~/-- 0. 

Introduction of an unknown function a(~) makes system (1) nonlinear and indeterminate. The  problem 
can be made determinate,  for example, using the conditions of a constant amplitude function of an arbi t rary 
physical quanti ty at the line of maximum amplitude of mass-flow fluctuations rh = pfi + ujS. This line 

corresponds to tile critical layer as R -~ oo. 
We used Newton's method to calculate a. 

conditions 

f f z -  rho = 0 

P - P o  = 0  

The iteration process is directed to fulfill one of two 

for ~7 = ~max, (8) 

for ~7 = •max, (9) 

where/]max is the maximum of the function [ffz0(~)]- The same conditions are applicable for the flow around 
an arbi t rary body, where ~? is understood as an arbitrary coordinate chosen for boundary-layer calculations. 

If we use the coordinate system ((, ~p), condition (9) corresponds to the condition 01/5 = 0 for r = gZma~. 
Differentiating the second equation from (2) with respect to ~ and confining ourselves to the case of an 
ordinary boundary  layer where the curvature h2 in this equation can be ignored, we obtain the estimate 
0:/5 = O(6c(UcO:~ + a0:'~)), which is valid throughout  the entire critical layer. From this estimate, it follows 
that  the terms containing 0:i5 in (2) have the order R b (b < - 1 )  relative to the main terms and can be 
rejected [if condition (9) is not satisfied, these terms reach the order R-2/3]. System (2), (3) is parabolized 
in the same manner as in the case of rejected 01~. We note tha t  an additional requirement A~/~ < 0(6c) 
appears: the step of the marching scheme should be rather  small to stay within the critical layer if condition 

(9) is satisfied. 
Figures 1-3 show the effect of R on the spatial increment aj = 0.5d In A/dR,  where A is the amplitude 

of fluctuations of the mass flow [or pressure (curve 3 in Fig. 2)t for ~ = ~max. All the results, including those 
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taken for comparison from [1], were obtained using condition (8), except for the results shown by curves 2-4 
in Fig. 2, which were calculated using condition (9). The calculations were performed for a heat-insulated 
wall, Pr  = 1, and # = T. 

The data presented in Figs. 1 and 2 were obtained for hi = 5 and w = 2- 10 -4. The calculation results 
obtained using a parabolized system of equations (curve 1 in Fig. 1) predict a greater growth of perturbations 
than the parallel theory (curve 2), especially within the range of the fundamental mode (R < 600). 

For calculations within the framework of the local model, we propose equations of system (6) with 
rejected terms containing derivatives of the amplitude functions of perturbations relative to R. The results 
(curve 3 in Fig. 1) are in satisfactory agreement with the results of the parabolic problem and are used in it 
as initial conditions. 

The results for mass-fiow fluctuations (curve 2 in Fig. 2) and pressure fluctuations (curve 3), which 
were obtained in one calculation, show how the increments of fluctuations of these parameters differ. 

The fact that  the results for mass-flow fluctuations do not coincide when we use condition (8) or (9) 
(curves 1 and 2 in Fig. 2) is explained by inadequacy (within the error of order R -1) of boundary conditions 
(7) to system (6). Thus, Zke in (7) are functions of a,  but the values of a are different for conditions 
(8) and (9) when the iteration process is finished. In one case, the imaginary part of a is related to aj 
as aj = - I m  (mR) for rh (curve 1), and in the other case, for /5 (curve 3). The maximum growth of the /* 
fluctuation amplitude In (Amax/Amin) = 2 I o~j dR corresponding to curves 1 and 2 is 8.1 and 8.4. For 

J 
o~j > o  

parallel and locally nonparallel theories (curves 2 and 3 
Curve 4 in Fig. 2 is calculated using relations (3); 

and (4). 

in Fig. 1), these values are 5.5 and 7.4. 
it is plotted to demonstrate the accuracy of Eqs. (2) 

A satisfactory accuracy is reached for a step AR = 20. Additional calculations conducted with small 
constant steps along ~ confirmed that  restriction (5) on the step is eliminated. The calculation remains stable 
for I~IA~ = 0.5, and the calculation is stable for M = 0 even if the step is reduced by a factor of 20. The 
results for M = 0 and w = 7 . 1 0  -5 are represented by curve I in Fig. 3. For large R, they agree with the 
results of Li and Malik [1] (curve 2) and differ from the results obtained using the parallel theory (curve 3 in 
Fig. 3). 

A comparison was performed for results obtained with and without account of terms containing 01/5, 
and with the use of condition (9). The difference in the increments sometimes reaches 3%, and the maximum 
increase in amplitude is almost identical. We note tha t  rejection of 0~5/c9~ proposed previously by Li and 
Malik [1] for reduction of the minimum step along ~ leads to loss of accuracy if we use condition (8) or any 
other condition that  contradicts the requirement 15 = const in the critical layer. 

Thus, to calculate the stability of a compressible boundary layer, we recommend system (2), (4) with 
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rejected terms that contain 015/c9~ and with condition (9) for calculation of c~. In studying the propagation 
of an external perturbation in the boundary layer, we propose to use system (2), (4) in the full form, since c~ 
is given and conditions like (8) and (9) are not needed. In this case, the step of the marching scheme is not 
limited by inequality (5), since the system does not contain 0~5/0~. 
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